CORRELATION FUNCTIONS OF INTERNAL STRESSES
OF DISLOCATION LOOPS

V. G. Baryshnikov and T. D. Shermergor

The internal stresses in face-centered cubic monocrystals associated with prismatic disloca~
tion loops are calculated, based on nonsimultaneous equations. Assuming that the Burgers
vector of each loop has equiprobable orientations coordinated with the system of sliding planes
and that the loops themselves are distributed randomly in space, the characteristics of a ran-
dom component of the internal field of stresses are calculated. The spectral density of the
energy and the binary correlation function of the tensors of the internal stresses are found.
The tensor and coordinate relationships of the correlation functions are analyzed.

The internal stresses considerably influence the physical and mechanical properties of solids. Various
defects in the structure can be the cause of their occurrence. However, dislocations are the biggest con-
tributing factor to internal stresses.

Dislocation stresses are determined by the dislocation density and the structure of the dislocation
networks. A large number of experimental works [1] are devoted to investigation of these. However,
success has been achieved in carrying out theoretical calculation in a limited number of cases especially in
conformity with the parallel arrangement of the lines of dislocation. Hence such integral characteristics
as the dispersion and energy of the internal stresses [2-4] were calculated. Although this approach gives
certain information about internal stresses, it has the disadvantage that it does not enable their three-di-
mensional distribution to be evaluated.

On the other hand, the elastic field of dislocation clusters has been investigated in detail for a num-
ber of regular dislocation structures: boundaries of blocks, polygonal walls, and clusters of rectilinear
dislocations [5]. An obvious drawback of the model approach for integral description of the field of internal
stresses will be, on the one hand, the great variety of dislocation structures and, on the other hand, the
irregularity of the distribution of the dislocations.

Beginning with this,it is of interest to calculate the internal stresses associated with dislocations,
hased on the theory of random functions. It is convenient to adopt binary correlation functions of internal
stresses as the integral characteristic of the elastic field of the system of dislocations; from these, such
parameters as the dispersion and the internal energy can be obtained. These functions also describe the
three-dimensional decrease of the correlation connections of the random field of internal stresses.

1. Inthe continum theory of dislocations the sources of internal stresses are characterized by the
nonsimultaneity tensor 7y, and the internal stresses o) ; are determined from the solution of the follow-
ing system of equations:

Rotxji 801961 = Mmny V05 = 0, BOBZ? = BipmBiqn VoV g (1.1)
with corresponding boundary conditions [6].

Here s;;17 1s the tensor of elastic ductilities, £jpy, is the unit antisymmetrical tensor, V; indicates
differentiation with respect to the corresponding coordinate, and summation is assumed according to the
repeating indices.
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The distribution of dislocations in a real crystal can be characterized by the tensor of the dislocation
density oy or by the tensor of the density of the dislocation moments py; (dislocation polarization), which
is associated with the tensor of nonsimultaneity of the relationships

Nis = ViErGamt #51 = 8jmn Vmbnt (1.2)
Here symmetrization is ecarried out according to the indices included in the parentheses.

It follows from the homogeneity of the tensor of ductilities that the regular (o} p and random ¢'yy
components of the field of stresses are determined by the equations

RotnSijia {5ed = Mimnds Rot7s 5550k = Thmn (1.3)

Here and further on,the angular brackets are used to indicate statistical averaging, and the random
components of the corresponding magnitudes are designated by primes.

We will consider that the random fields of the dislocation density and those of the dislocation polariza-
tion are statistically homogeneous. Their mean values will then be constant over the crystal, and the mean
values of the tensors of nonsimultaneity and of the internal stresses will be equal to zero in accordance with
Eqgs. (1.1) and (1.2). As a result of statistical homogeneity the binary correlation functions will only depend
on the radius vector r which connects the two examined points of the crystal:

ME @ = @i paln 41>, AF®) = i) dm (e + 1> (1.4)
The correlation function HEZ (r) of the tensor of nonsimultaneity can be expressed through the func-

tions AKX and MKZ:
1] ij -

" . . .
Hij = — Rot} AJ? = RotEE RotinM me (1.5)

The solution of system (1.1) for an unrestricted crystal is presented in the form of a convolution
integral with the Green tensor GE‘ll of the internal stresges:

ou@®={CHo—pn.@d, dp =dpdpyp, (1.6)

in which the Green tensor is determined by the equations [6]
Rotls; Gl = — o= Rot¥ RotiFr,  V,GH =10 (L)

The second equation of (1.7) is a condition of bivortical nature of the elastic fields of the internal
stresses.

The expression (1.6) enables the following integral representation of the binary correlation function
of the tensors of the internal stresses zgl to be obtained:

28 () = (G5 (11 — p) HEE (b1 — po) Glte (ra — po) dpidpa, T=11— 1y (1.8)

Changing over in expression (1.8) to the Fourier transforms, we find
S5 () = s \ GFF ) 2 (k) Gl (— ) e de (1.9)

=Y (k) = G (k) HES, (&) Grin (— k) (1.10)
Here the integral Fourier transform used and the integral representation of the §-function are

G =Gk, S0 = o ) e di (1.11)

The expressions (1.9) and (1.10) together with the relationships (1.5) give a general solution of the

set problem concerning the connection between the correlation function of the tensor of the internal stresses
and the correlation functions of the tensor of the density of dislocations and the dislocation polarization.
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TABLE 1

; G, 10% m pu, 107 Pizs ‘1012 Pas 10122 u, 1012

i dyn/cm zf{yn/cm2 dyn/cm2 dyn/cm dyn/cmg

[ ]
Al 0.28 1.54 0.46 0.45 0.10 0.23
Cu 0.55 1.48 0.94 0.80 0.22 (.56
Ge 0.56 1.24 0.79 0.74 0.22 0.59
Si 0.68 1,28 0.97 0.92 0.26 65

Co . s We will subsequently adopt an approximation of
C\) i .. Q & the isotropy of the elastic moduli [5]; however, we will
CER consider that the distribution of dislocations in the

[\O\‘; crystal are in agreement with the crystallographic

axes. Then from Egs. (1.7) we obtain an explicit form

o

o 00

« s .

. 5

O s & D OO

[772] 7 of the Fourier transform of the Green tensor [7]:
Fig. 1 26 23K+ 6
& G (k) = T [mE:385q — EpaEinels m = —;‘g‘;:%@"z“ {1.12)
ki,
G =—a — by

which enables the function zlfjl to be represented in the following form:

23:]Z (k) = e {g}?(igﬁq - mgijgpq} {Ek(mgn)l - mgmragkl} HTP?SI (k} (1. 13}

Here K and G are the mean moduli of compression on all sides and shear,

2. We will adapt the results obtained to monocrystals containing nonoverlapping dislocation loops.
For definiteness we will examine the whole of the prismatic dislocations in face~centered cubic crystals.
Dislocations of this kind are plates of vacancies or of introduced atoms [8] whose thickness corresponds in
order of magnitude to a constant lattice. Electron-microsecopic investigation of a number of face~centered
cubic crystals [8-12] shows that the prismatic dislocations lie in the {110} planes with the Burgers vectors
b~ 1/2 (110) , which are oriented normal to the plane of the loop.

The distribution of the dislocation loops will be characterized by the tensor of dislocation polariza-
tion. For the dislocation discs examined, this tensor can be represented as follows;

Map = bnyh 30 (V) (2.1

where & (V) is the §~function of the region V which is occupied by the dislocation disc [13] and n is the unit
vector of the normal to its plane.

We will consider that the loops are scattered in a chaotic manner over the volume of the erystal and
their Burgers vectors are equally likely to have any (110)direction. Then (ujk) =0.

In order to determine the dispersion Aliijl = lel (0) of the random field of the tensor of the disloca-
i

s : . J .
tion polarization, we will carry out averaging in two stages. In the first place we will find the arithmetical
mean { pij(r) BK] (T)hy The index w represents averaging over all 12 orientations of the Burgers vector.
In the crystallographic system of coordinates we have

3
Chsy (5) ot (Yo = ~poome | BiBnt + 201007 — 2 81,85:0kndin |8 (V) 2.2)

n==],

We will now average (2.2} with respect to the erystal volume; this gives

E]
i 5T
Al = 1o | 810w 20idn; — 2 858 5u0bin | 2.3)

n==]1

where y is the relative volume occupied hy the dislocation plates,
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£ T -
\\Q/ We will present the correlation function Mkz as a product of the
ij

Z
p ! tensor Akjl and coordinate ¢ (r) components:
R \\ | M) = Aff o ) (2.4)
The function ¢ (r) is determined by the law of distribution of dis~
P 2 4 ¢ location loops over the volume of the crystal. The expression (2.4) to-
£ a\>_ gether with (1.5) and (1.13) enables the correlation tensor of internal
I stresses to be represented in the form
Fig. 2 ZikJ[ (r) = 4G2‘P mnevamesbpsnctaqdrAr:[Z% (), ‘Pﬂn = md by — &k(man)l (2‘5)
1 k) ;
=V Vv VI, [(0) =5 S%le““ dk (2.6)

First of all we will calculate the dispersion of the internal stresses. For this purpose we bear
in mind that ¢(0) = 1 and also the relationships
S (1) (k) kdk == anq; (0), Snir_tjnknl dQ = iE (3.”‘,” (2 7)
p .
83 == 81301 + 8351 + 8udins ny = kifk
Then, by changing over to spherical coordinates in (2.6) we find
I (0) = : Sy (2.8)

Hence

2‘]3 {O) {Vézsé’kl + 146%{@ £) 3 2 6211631161(?161“] (2.9)

n=}

gﬁglhé-G“‘, v=96mt—64m4 7

1t follows from (2.9) that the autocorrelation tensor of the internal stresses has cubic symmetry.
By changing over from tensor designationstomatrix designations, we will quote three independent compo~
nents of this magnitude:

Sy =% (48m? —32m + 9), zn:ﬁ’g, Tu=% (2.10)

The density of the internal energy associated with dislocations can be found according to the known disper-
sion of internal stresses:

U = Yy 835 Zh (0) @.11)
Substituting here the value z%’il (0) in accordance with (2.9), we obtain
ij o

U = Y58 [v (511 + 2830) -+ sy + Tsaa)] (2.12)

The energy characteristic of nonuniformity of distribution of internal stresses can be the spectral
density of energy E (k). The latter is determined by the relationship [14]

U= S E (kydk (2.13)

The magnitude E(k) is connected in the following way with the Fourier transformof the correlation
tensor of internal stresses:

k2
(k) = qamg Sii | Zejwa (6) 42 2.14)

Hence, by using Eqs. (2.5) and (2.6) we obtain

E(k) = 2‘2 = —f;aww (14-a%k?) (2.15)
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¢ where the coordinate relationship of the correlation tensor is taken as
2

b \ exponential with the correlation scale a
N | ¢ (k) = 8ad (1 -+ ?h?)2

¢ (r) = exp (—r/a), (2.16)

It follows from Eq. (2.15) that for long waves E (k) ~ k%, while for
short waves E (k) ~k™%. The maximum E (k) matches the value k=a-1.

In order to evaluate the influence of the material on 3 and U we will
introduce new parameters with the equations

u=U/ Y Pmn = (v—lznw;)% :

The values of these parameters for four materials are given in

Fig. 3 Table 1. In order to calculate u and p,, it was assumed that the thickness
of the dislocation plates was equal to the Burgers vector. It is seen from
Table 1 that at the same density of the dislocation loops, silicon has the
highest energy, and aluminum the lowest.

In order to evaluate the parameter Y, We will take into account the fact that in aluminum and copper
the diameter of the dislocation loops ~ 102 A and their density is ~ 10 cm-? [5]. Hencey ~ 107%, which
corresponds with the concentration of quenching vacancies. Having this in view we obtain

3% =5 kef/mm?, k=1 kgf/mm?®, U = 2.10% ergs/cm?,
for aluminum,

3. The dispersion and internal energy of the dislocation stresses were calculated above., We will now
turn to the finding of a binary correlation function of dislocation stresses.

Calculation of the integrals introduced by Egs. (2.6) in the case of conditions (2.16) gives
) . 3.1)
I'(r) =a*[(1 +407) e — 47 (1 +Y0%)], p=r/a
L5 () = f1(0) iswe + f2.(0) mingruay +- fo (0) Pigp
Pijir = 2 @iy -+ Spawmymuy + Spunsngg) (3.2)
O°h = —12 +p* + (12 120 4 5p* - p%) €7°

0%, = 3 (100 — 7p?) — (300 +4- 300 p - 129p% + 2903 }- 20 —p®) g7®

pfs = 3(20 — p*) — (60 +60p + 27p* +Tp* - p*) e (3.3)

The square brackets used in Eq. (3.2) indicate symmetrization according to pairs of indices for
example:

dpisty =Yg (83577 - Braniny)

(3.4)
Substituting the expressions (2.3), (3.2), and (3.3) into (2.5), we obtain
3
- 2
28 ) = %—[%51'5‘5;:1 + Podixdny + @3 21 8;05n0xndin
3
+ 204857y + 576 85y - 2060 > xadinyn?
=1
3 3 {(3.5)
+ 29, D) 8pindsanedmitn + Ps D Sucdiyidiyntin’
n=1 n=1

3 3 )
+ Qormyngny + 2916005 D) Maduni® + Paa D) Oniinty) Sngitsy ":ﬂ

n=1 n=1

where the functions @5 (p) are determined by the equations

3
1=y + [Tm? — 6m 4 2 — (m — 12 D) n,#|fo + (B4m* —58m + 8) fa

n=1

P =2(Tf; +f, +8fs)s —9s=3hH +1s + 6f5
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@ =2[2m — ) f, +(Um — 2} fol, —@s=4(f, +7d
Pe=(m — 1) {(f; +15) (3.6)
$ = 2, +3f2), —@s=4fs @y = 4Py = — ¢1y=4f

It follows from expression (3.5) that for three characteristic directions [001], [110], and [111]} the
correlation matrix of the internal stresses is of the form shown in Fig. 1. Here the elements of the matrix
which are different from zero are indicated by circles, those which are equal to zero are indicated by dots,
and the elements of the same kind are connected by a line. In the first and third cases the correlation
matrix ¥,,, is characterized by six different elements, and in the second, by nine.

As was to be expected, the symmetry of the matrix %, appears lower than the cubic symmetry,
since together with the anisotropic distribution of the dislocation loops, in accordance with the cubic symme-
try of the medium, the correlation matrix is characterized by the isolated direction in the expanse which
connects two points between which there is a correlation connection.

Definite values of the components of the matrix £, can easily be found from the expression (3.5).
For example, for the direction {001] we will have

=@t @t 0 En® =24+ @i+ 9 - 2 {9+ 9+ 97+ 910)
2%66" = Pay 32" = Py 430" = 20 + @5+ @8, (3.7)

3
Zy3” = @y + s+ Qs+ Proy I’ = Ez“zmn

As can be seen from expressions (3.5) and (3.7), the coordinate dependence of the component of the tensor
= mn is determined by the functions ¢;. Three of these, ¢, ¢,, and ¢4, depend on the elastic moduli of the
crystal, besides which the behavior of the function ¢, depends on the direction along which the correlation
connections are examined. Graphs of these functions are shown in Fig. 2. Curves 1, 2, and 3 are the rela-
tionships ¢, (p) for aluminum, copper, and germanium (silicon) respectively. The functions ¢; (p) are in-
variant relative to the axial properties and directions given in Fig. 3. Here the numbers show the index of
the function ¢j.

As seen from the figures, all the functions ¢ have an extremum where 1.5 = p = 3, after which they
decrease with increase in the distance. The angular dependence of the function ¢, is found to be weak.
Hence, at distances of the order of the scale of the correlation, the difference in the functions ¢, calculated
for the directions [001], [110], and [111] is 1%. The dependence between the elastic moduli of the function
¢, appears considerable at small p and practically disappears at distances somewhat exceeding the correla-
tion scales,which is illustrated by curves 1-3 in Fig. 2. For functions ¢,(p) and ¢4(p) (curves 4 and 5)
this dependence is negligibly small.

The coordinate dependences of the components of the correlation matrix of internal stresses, corre-
spondingtothe orientations [001], [110], and [111] of the section which connects the points between which the
correlation connection is established, are given in Fig. 4. The numbers on the curves indicate the indices
of the dimensionless correlation functions S,,,, obtained by means of division of the magnitude =, (r) by
S mn(©® in the case of ¥ yy(0) # 0 and by the absolute magnitude of the maximum (minimum} ¥ pup(r} if
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= mn{0) =0. For comparison, an exponent (curve 1} which describes the coordinate dependence of the binary
correlation function of dislocation polarization is given on the graphs,

If we compare the curves for the [001] direction, we note that the monotonous decrease takes place
only for the component S;;. In all the remaining cases the curves pass through a minimum which takes
place at distances from p =2 to p =3.

As is seen from the structure of the matrix given in Fig. 1, for the direction [001] the changeover to
cubic symmetry imposes additional conditions 853 =8y, S5 =8y, and Sy3 =S4, Whereby none of the components
of the matrix Syp is here converted to zero. On the other hand, for the direction [111], which is also
characterized by six different components of the correlation matrix of internal stresses. the changeover to
cubic structure imposes additional conditions S;, =85 =8;; =0. Corresponding to this, three of the six dif-
ferent components of the matrix S,yy,,, where r — 0, return to zero. The [111] direction is also characterized
by the fact that none of the components S,,,, is described by a monotonous curve. We also point out that
the components S;; and S;; are found to be negative, which indicates a noncorrespondence of the signs of
random components of the longitudinal and shear components of the elastic fields, At the same time the
correlations of the different shear components of the stresses, described by the component S, will be
positive.

For the [110] direction the changeover to r — 0 leads to conversion of the components 8,5 =Sy, Sy,
and Sy; to zero. Hence the function S;; in the whole region is positive, while the components S, ~ 8, are
negative. The monotonous drop takes place for the component Sy, while the functions Sy, Sy, Sg3, 45, and
Sy pass intothe region of negative values at distances of the order of one or two scales of correlations and
have a minimum at distances 2 = p = 3, after which their asymptotic approach to the abscissa is observed.

For comparison of absolute values of correlation tensors of internal stresses we will introduce the
parameter Zmy, which equals the ratio of gy, (0) to the value 3,4 (0). Then, selecting aluminum as the
definite case, we will find for all directions z;, =0.92 and z,4 =0.047, that is, a correlation between the shear
components of the field is considerably weaker than between the longitudinal components.

In order to compare the components 3 ; Which are converted to zero when r — 0, we will introduce
the coefficients gpxgn’ having determined them as a ratio of the extreme value zfnn to the greatest of the
magnitudes qu* at a given p* All the functions S, have a maximum (minimum) at p =1.5. The compo-
nent %, has the greatest of the maxima for the [111] direction, and the component 236 has the greatest of the
maxima for the [110] direction. Accordingly, in the first case we find L “ogqg 6, £} 4 =0.045, and in the
second case £§f = 0.95, £3§ =0.18. Comparison of the values 3, for the [111} direction and 54, for [110] at
the points of the minimum (p = 1.5) with corresponding magnitudes 34, (p) shows that they are of one order;
Zq (1.5) = 234, (1.5) for the direction [111}, and T4 (1.5) ~ 2%, (1.5) for the direction [110].
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