
C O R R E L A T I O N  F U N C T I O N S  O F  I N T E R N A L  S T R E S S E S  

O F  D I S L O C A T I O N  L O O P S  

V.  G.  B a r y s h n i k o v  a n d  T .  D. S h e r m e r g o r  

The in te rna l  s t r e s s e s  in f a c e - c e n t e r e d  cubic monocrys t a l s  a s soc ia ted  with p r i s m a t i c  d i s loca-  
t ion loops a r e  calculated,  based  on nonsimut taneous  equations.  Assuming  that the B u r g e r s  
v e c t o r  of each  loop has  equiprobable  or ienta t ions  coordinated with the s y s t e m  of sliding planes  
and that  the loops t h e m s e l v e s  a re  d is t r ibuted randomly in space,  the c h a r a c t e r i s t i c s  of a r a n -  
dom component of the in ternal  field of s t r e s s e s  a re  calculated.  The spec t r a l  densi ty of the 
ene rgy  and the b inary  co r re l a t ion  function of the t e n s o r s  of the in ternal  s t r e s s e s  a r e  found. 
The  t e n s o r  and coordinate  re la t ionships  of the co r re l a t ion  functions a r e  analyzed.  

The  in terna l  s t r e s s e s  cons iderably  influence the phys ica l  and mechanica l  p r o p e r t i e s  of solids.  Var ious  
defects  in the s t r u c t u r e  can be the cause  of t he i r  occur rence .  However ,  d is locat ions  a r e  the biggest: con-  
t r ibu t ing  fac tor  to in ternal  s t r e s s e s .  

Dislocat ion s t r e s s e s  a r e  de te rmined  by the dis locat ion densi ty  and the s t ruc tu re  of the dis locat ion 
ne tworks .  A l a rge  n u m b e r  of  expe r imen ta l  works  [1] a r e  devoted to invest igat ion of these .  However ,  
s ucce s s  has  been achieved in c a r r y i n g  out theore t i ca l  calculat ion in a l imi ted n u m b e r  of c a se s  e spec ia l ly  in 
conformi ty  with the pa ra l l e l  a r r a n g e m e n t  of the l ines of dislocation.  Hence such in tegra l  c h a r a c t e r i s t i c s  
as  the d i spe r s ion  and ene rgy  of the in terna l  s t r e s s e s  [2-4] were  calculated.  Although this  approach gives  
ce r ta in  informat ion  about in te rna l  s t r e s s e s ,  it has the disadvantage that  it does not enable  t he i r  t h r e e - d i -  
mensional  dis t r ibut ion to be evaluated.  

On the o ther  hand, the e las t ic  field of dis locat ion c lus t e r s  has been invest igated in detail  for  a num-  
b e r  of r egu la r  d is locat ion s t r u c t u r e s :  boundar ies  of blocks,  polygonal  wal ls ,  and c lu s t e r s  of r ec t i l i nea r  
d is loca t ions  [5]. An obvious drawback of the model approach for  integrM descr ip t ion  of the field of in ternal  
s t r e s s e s  will  be, on the one hand, the g rea t  va r i e t y  of dislocat ion s t r u c t u r e s  and, on the other  hand, the 
i r r e g u l a r i t y  of the dis t r ibut ion of the dis locat ions.  

Beginning with this ,  i t  is  of  i n t e re s t  to calcula te  the in terna l  s t r e s s e s  a s soc ia t ed  with dis locat ions ,  
based  on the theory  of random functions. It is convenient to adopt b inary  co r re l a t ion  functions of in ternal  
s t r e s s e s  as the in tegra l  c h a r a c t e r i s t i c  of the e las t ic  field of the s y s t e m  of dis locat ions;  f rom these ,  such 
p a r a m e t e r s  as  the d i spe r s ion  and the in ternal  energy  can be obtained. These  functions also desc r ibe  the 
t h r e e - d i m e n s i o n a l  d e c r e a s e  of the co r re l a t ion  co~mections of the r andom field of in ternal  s t r e s s e s .  

1. In the continum theory  of d is locat ions  the sources  of in ternal  s t r e s s e s  a re  cha r ac t e r i z ed  by the 
nonsimul tanei ty  t en s o r  ~mn, and the in ternal  s t r e s s e s  ~ k l  a r e  de te rmined  f rom the solution of the fol low- 
ing s y s t e m  of equations: 

m i  Rot~j s~ j~ l  = ~1~, V~kz = 0, R~ i ~ e~weJ~VpVq (1.1) 

with cor responding  boundary  conditions [6]. 

He re  Sijk/ is the t e n s o r  of e las t ic  ducti l i t ies ,  Sip m is  the unit a n t i s y m m e t r i c M  tensor ,  V i indicates  
di f ferent ia t ion with r e spec t  to the cor responding  coordinate ,  and summat ion  is a s sumed  according to the 
repea t ing  indices.  
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The dis tr ibut ion of d is locat ions  in a r ea l  c ry s t a l  can be cha r ac t e r i z ed  by the t e n s o r  of the dis locat ion 
densi ty  a ik  or  by the t enso r  of the densi ty of the dis locat ion m o m e n t s  #ik (dislocation polar izat ion) ,  which 
is a ssoc ia ted  with the t enso r  of nonsimul tanei ty  of the re la t ionsh ips  

~h~ = Y~e~(i~ ~t = e ~ V ~ t ~  (1.2) 

He re  s y m m e t r i z a t i o n  i s  c a r r i e d  out according  to the indices included in the pa ren theses .  

It follows f r o m  the homogenei ty  of the t en so r  of ducti l i t ies  that  t h e  r egu la r  <~k/> and random ~'kl  
components  of the field of s t r e s s e s  a r e  de te rmined  by the equations 

lb mt  mi  ' " 
Ro ~ s ~  <~t> = <~Im~), R o t ~ s i ~  = ~ir~ (1.3) 

Here  and fu r the r  on, the angular  b r a c k e t s  a r e  used to indicate s ta t i s t ica l  averaging,  and the random 
components  of  the cor responding  magni tudes  a r e  designated by p r i m e s .  

We will  cons ider  that  the r andom fields of the dislocat ion densi ty  and those  of the dislocat ion p o l a r i z a -  
tion a re  s ta t i s t ica l ly  homogeneous.  T h e i r  mean values  will  then be constant over  the crys ta l ,  and the mean 
va lues  of the t e n s o r s  of nonsimul tanei ty  and of the in terna l  s t r e s s e s  will  be equal to ze ro  in accordance  with 
Eqs.  (1.1) mad (1.2). As a r e su l t  of s t a t i s t i ca l  homogenei ty  the b inary  cor re la t ion  functions will only depend 
on the radius  v e c t o r  r which connects  the two examined points of the c rys ta l :  

M~] (r) = <]x~ i (r~) Ix~i(r, + r)) ,  Ai ~] (r) = <~ij (rx) c ~  (r I -~- r)> (1.4) 

The cor re la t ion  function H.k./(r) of the t enso r  of nonsimul tanei ty  can be e x p r e s s e d  through the func- 
tl 

x t u ~ q ( k  .r l )q  == xtUUq(/~ _r,t O ~, l )m.~ Vx m q  

The solution of s y s t em  (1.1) for an un re s t r i c t ed  c rys t a l  is p re sen ted  in the fo rm of a convolution 
in tegra l  with the Green  t e n s o r  GPq of the internal  s t r e s s e s :  

k l  

z~, (r) = i G~ (r -- p) %~ (p) dp, dp ~ dp=dpflp: (1.6) 

in which the  Green  t en s o r  is de te rmined  by the equations [6] 

R " ~  ~ q  8~ R ~  R o ~  r, V G pq 0 (1.7) 

The  second equation of (1.7) is a condition of b ivor t i ca l  na ture  of the e las t ic  fields of the  in ternal  

s t r e s s e s .  

The expres s ion  (1.6) enables the following integral  r ep resen ta t ion  of the b inary  cor re la t ion  function 
of the t e n s o r s  of the in ternal  s t r e s s e s  z k l  to be obtained: 1] 

}2.K z fC Gpq pq ~t - -  P1) H,~  (PI - -  P2) G ~  (r~ - -  P2) dpldp~, r ~ r l  - -  r~ (h8) 

Changing over  in express ion  (1.8) to the Four i e r  t r a n s f o r m s ,  we find 

~z t ~ G pq tk~ H pa (k) G~n (-- k) e ~kr dk (1.9) 

--_ G ~ q t u ~ P q  tt-~G~t t k) (1.10) ~2 

Here  the in tegra l  F o u r i e r  t r a n s f o r m  used and the in tegra l  r epresen ta t ion  of the 6-function a r e  

The  exp re s s ions  (1.9) and (1.10) toge ther  with the re la t ionships  (1.5) give a genera l  solution of the 
set  p rob l em concerning the connection between the cor re la t ion  function of the t enso r  of the in ternal  s t r e s s e s  
and the co r re la t ion  functions of the t e n s o r  of the densi ty  of dis locat ions  and the dislocation polar izat ion.  
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TABLE 1 

A1 
Cu 
Ge 

'St 

G, lO 12 
dyn/cm ~ 

0.26 
0.55 
0.56 
0.68 

.54 
i .48 
i.24 
l, 28 

Pn, lOn 
dyn/cm ~ 

0.46 
0.94 
0, 79 
0.97 

Pl~, I0i2 
dyn/cm ~ 

0.45 
0.80 
0.74 
0.92 

P~, lOi~ I u, I012 
dY n/crn2 i dY n/cm~ 

0. i0 
0.22 
0.22 
0.26 

0.23 
0.56 
0.59 
0.65 

%- 
[ o [ _ _  

VzhT-- {ix,,} 

We will subsequently adopt an approximation of 
the isotropy of the elast ic  moduti [5]; however,  we will 
consider  that  the distribution of dislocations in the 
crys ta l  a re  in agreement  with the c rys ta l lographic  
axes. Then f r o m E q s .  (1.7) we obtain an explicr~ fo rm 
of the Four ie r  t r ans fo rm of the Green tensor  [7] : 

2G . ~ ~. Fig, 1 G~ q (k) = ~ im~i~%q --  ~p(~j)q], 

kik i 

which enables the fimction Z .kl to be represen ted  in the following form: 

E ~ [k ~ 463 

6ij 

2 (3K + G) 
3K + 46 (1.12) 

(1.13) 

Here K and G are the mean moduli of compress ion  on all sides and shear.  

2. We will adapt the resul ts  obtained to monocrys ta l s  containing nonoverlapping dislocation loops. 
Fo r  definiteness we will examine the whole of the p r i sma t i c  dislocations in f ace -cen te red  cubic crys ta ls .  
Dislocations of this kind a re  plates of vacancies  or  of introduced atoms [8] whose thickness cor responds  in 
o rde r  of magnitude to a constant lattice. E lec t ron-microscopic  investigation of a number  of f ace -cen te red  
cubic c rys ta l s  [8-12] shows that the p r i sma t i c  dislocations lie in the { 110} planes with the Burgers  vec to rs  
b ~ 1/2 < 110> , which a re  oriented normal  to the plane of the loop. 

The distribution of the dislocation loops will be charac te r i zed  by the t enso r  of dislocation po la r i za -  
tion. Fo r  the dislocation discs  examined, this t enso r  can be represen ted  as follows: 

~ == bin.~h-15 (V) (2.1) 

where  5 (V) is the 5-funct ion of the region V which is occupied by the dislocation disc [13] and n is the unit 
vec to r  of the normal  to its plane. 

We will consider  that the loops are  sca t te red  in a chaotic manner  over  the volume of the c rys ta l  and 
the i r  Burgers  vec to r s  a re  equally likely to have any (110}direction. Then (~ik  } = 0. 

In order  to determine the dispers ion A k/  . . . .  -~ M k/  (0) of the random field of the t ensor  of the dis loca-  
1] 1] 

t ion polarizat ion,  we will c a r r y  out averaging in two stages.  In the f i rs t  place we will find the ar i thmet ical  
mean (~i j ( r )gk/ ( r )>w.  The index w represen t s  averaging over  all 12 orientat ions of the Burge r s  vector .  
In the c rys ta l lographic  sys tem of coordinates  we have 

3 

b ~ " 
<~ij (r) ~ (r)>~ = ~ [6~5~ -~ 26~(~6oj -- ~ 6~6j~b~,~6t~ 16 (Y) (2.2) 

We will now average  (2.2) with respec t  to the c rys ta l  volume; this gives 

3 

where T is the relat ive volume occupied by the dislocation plates.  
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We will  p resen t  the cor re la t ion  function M kl  as a product  of the 

t en so r  Ak. l and coordinate q (r) components: ~ 

M~ ~r ~ A ~ "r" ~,~ ~= ~)q~() (2.4) 

The function go (r) is de te rmined  by the law of distribution of d is -  
location loops over  the volume of the crysta l ,  The express ion  (2.4) to -  
gether  with (1.5) and (1.13) enables the cor re la t ion  tensor  of internal  
s t r e s s e s  to be represen ted  in the form 

z~J (~) = ~ c ~ , ~ % ~ L ~ o ~ , ~ o , ~ , a ~ g  (r), r - -  m~, - ~ ( ~ . ) ~  (2 .5 )  

I~]~--V~V~V~VtI(r), / ,(r)----  t (~(__~k) e~,dk (2.6) 

F i r s t  of all we will  calculate the d ispers ion  of the  in ternal  s t r e s ses .  F o r  this  purpose we b e a r  
in mind that go(0) - I and also the re la t ionships  

i ~ (k) k:dk --= 2 ~  (0), ~, n~n.~n~n l dQ = - ~  8~, 
0 

6~m --~ 6~6~ + 6~6~ + 6~6~, ni ~ k d k  

(2.7) 

Hence 

Then,  by changing ove r  to  spher ical  coordinates  in (2.6) we find 

I ~ "0" ~ t ) = 1/xr 6ira 

3 
gl g2 

n = l  

g ~  ~-~ G ~, v ~ 9 6 m ~ - - 6 4 m + 7  

(2.8) 

(2.9) 

It follows f rom (2.9) that the autocorre la t ion  t ensor  of the internal  s t r e s s e s  has cubic symmetry .  
By changing over  f rom t enso r  designations to mat r ix  designations, we will quote th ree  independent compo-  
nents of this magnitude: 

. - -  vg ~ 3z + 9), (2,10) 

The  density of the in terna l  energy  assoc ia ted  with dislocat ions can be found according to the known d i s pe r -  
sion of in ternal  s t r e s s e s :  

U = 1/~ so~ y,~ (0) (2.11) 

Substituting here  the value Z kl  (0) in accordance with (2.9), we obtain 
1j 
V = 1/3og ~ [v (su + 281~) + l l sn  + 78~4)] (2.12) 

The  energy  cha rac t e r i s t i c  of nonuniformity of distr ibution of internal  s t r e s s e s  can be the spec t ra l  
density of energy E (D. The la t te r  is de termined by the relat ionship [14] 

co 

U = I g (k) dk (2.13) 
o 

The  magnitude E(k) is connected in the following way with the Four i e r  t r a n s f o r m  of the cor re la t ion  
t e n s o r  of in ternal  s t r e s s e s :  

k ~ 
g (k) = ~ s~ m I Y~im (k) dfl (2.14) 

Hence, by using Eqs. (2.5) and (2.6) we obtain 

E (k) ~ u k ~  (k) = ~ a~Uk ~ (~+a~k~) -~ (2.15) 
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Fig. 3 

w h e r e  t he  c o o r d i n a t e  r e l a t i o n s h i p  of t he  c o r r e l a t i o n  t e n s o r  i s  t a k e n  as  
e x p o n e n t i a l  w i th  the  c o r r e l a t i o n  s c a l e  a 

(p (r) = exp ( - - r  / a), ~ (k) = 8ha a (1 ~- a3k~) -3 (2.16) 

It f o l l ows  f r o m  Eq. (2.15) tha t  fo r  long w a v e s  E (k) ~ k 2, wh i l e  fo r  
s h o r t  w a v e s  E (k) .~k -2. The  m a x i m u m  E (k) m a t c h e s  t h e  v a l u e  k = a  -~. 

In o r d e r  to  e v a l u a t e  the  in f luence  of  the  m a t e r i a l  on E and U we wi l l  
i n t r o d u c e  new p a r a m e t e r s  wi th  the  equa t ions  

u = U / 7, P ~  = (7-1Y'.,~) '/' 

The  v a l u e s  of t h e s e  p a r a m e t e r s  fo r  four  m a t e r i a l s  a r e  g iven  in 
T a b l e  1. In o r d e r  to  c a l c u l a t e  u and  Pmn i t  w a s  a s s u m e d  tha t  the  t h i c k n e s s  
of t he  d i s l o c a t i o n  p l a t e s  was  equa l  to  the  B u r g e r s  v e c t o r .  It i s  s e e n  f r o m  
T a b l e  1 t ha t  at  the  s a m e  d e n s i t y  of  the  d i s l o c a t i o n  l oops ,  s i l i c o n  has  the  
h i g h e s t  e n e r g y ,  and a l u m i n u m  the  l o w e s t .  

In order to evaluate the parameter ~/, we will take into account the fact that in aluminum and copper 

the diameter of the dislocation loops N 10 2 ~ and their density is ~ 1014 cm -3 [5]. Hence T "~ i0-~, which 

corresponds with the concentration of quenching vacancies. Having this in view we obtain 

Y'l/~ = 5 kgf/mm ~, E~/~ = t kgf/mm 2, U = 2 . t0  ~ ergs/cm ~, 

f o r  a l u m i n u m .  

3. T h e  d i s p e r s i o n  and i n t e r n a l  e n e r g y  of  t he  d i s l o c a t i o n  s t r e s s e s  w e r e  c a l c u l a t e d  above .  We w i l l  now 
t u r n  to  the  f ind ing  of a b i n a r y  c o r r e l a t i o n  func t ion  of  d i s l o c a t i o n  s t r e s s e s .  

C a l c u l a t i o n  of  the  i n t e g r a l s  i n t r o d u c e d  by  Eqs .  (2~ in  t he  c a s e  of  cond i t ions  (2.16) g i v e s  

I ( r )  = a a [ ( t  -~49 -~) e - ~  - , ( t  +~/tp~)], p ~ r / a  
kl 

P ~  =-- 2 (5[~r § 5[i~n~nt I -~ 5[~n~n~]) 

9511 ~ --12 -t- P~ -t 2 (t2 + 12p + 5p ~ ~- pa) e-~ 

p~]~ ~ 3 (100 - -  7p 3) - -  (300 -t- 300 p + t290 ~ ~- 29p 3 ~- 2p a - -  p~) e TM 

p~]~ ~- 3 (20 - -  p 3 ) - -  (60 + 60p + 27p ~ -~ 7p a -~ p~) e-0 

(3.1) 

(3.2) 

(3.3) 

T h e  s q u a r e  b r a c k e t s  u s e d  in Eq. (3.2) i n d i c a t e  s y m m e t r i z a t i o n  a c c o r d i n g  to p a i r s  of i n d i c e s  :[or 
e x a m p l e :  

Subs t i t u t i ng  the  e x p r e s s i o n s  (2.3), (3.2), and  (3.3) in to  (2.5), we  obta in  

(3.4) 

3 
g~ 

n ~ l  

3 

-}- 2%5[~yn~nzl + %n(iS~)(~n~) -~- 2%b[~j ~,  ~ l . l n ~  3 

@ 2+7 ~ [ ~ n ( ~ ) . l n ~  -~- +s ~ ~(k~z)(i6J)~n~ 3 
n = l  n = l  

3 3 

(3.5) 

w h e r e  t he  func t ions  ~o i (p) a r e  d e t e r m i n e d  by  the  equa t i ons  

3 

+1 - ~ h  + [7m2 - 6 ~  + 2 -  (m - 1)3 E n21i~  + ( 6 ~  3 - 5Sin + S) is 
n = l  

+3 ~ 2 (7/~ + / 2  + S / s ) ,  - - % ~  3/1 @]3 @6/a 
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Fig. 4 

0 

94 ~ 2 [(2m --  i)/~ + (lirn - -  2) ]3], --95 -~ 4 (]~ +I s )  
(3.6) 

It follows f r o m  exp re s s ion  (3.5) that  for  t h ree  c h a r a c t e r i s t i c  d i rec t ions  [001], [110], and [111] the 
co r re Ia t ion  m a t r i x  of the in ternal  s t r e s s e s  is  of the fo rm shown in Fig. 1. He re  the e lements  of the ma t r ix  
which a r e  different  f r o m  ze ro  a re  indicated by c i rc les ,  those  which a r e  equal to ze ro  a re  indicated by dots,  
and the e lements  of the s a m e  kind a r e  connected by a line. In the f i r s t  and th i rd  cases  the cor re la t ion  
m a t r i x  Z m n  is  c h a r a c t e r i z e d  by  s ix  different  e lements ,  and in the second, by nine. 

As was to be  expected,  the s y m m e t r y  of the ma t r i x  ~ mn appea r s  lower  than the cubic s y m m e t r y ,  
s ince together  with the an iso t rop ic  dis t r ibut ion of the dis locat ion loops, in accordance  with the cubic s y m m e -  
t r y  of the medium, the co r re l a t ion  m a t r i x  is cha rac t e r i zed  by the i so la ted  di rec t ion in the expanse  which 
connects  two points  between which t he r e  is a cor re la t ion  connection. 

Definite va lues  of the components  of the ma t r ix  Z mn can eas i ly  be  found f rom the express ion  (3.5). 
F o r  example ,  for  the  d i rec t ion [001] we will  have 

2~6~" = ~ ,  Z12 ~ = % ,  4~44 ~ = 2~0~ + cp~ q-  ~s,i  (3.7) 
3 x 

As can be seen  f r o m  exp re s s ions  (3.5) and (3.7), the coordinate  dependence of the component of the t enso r  
~ m n  is de te rmined  by the functions 9i- T h r e e  of these ,  91, ~4, and q~6, depend on the e las t ic  moduli of the 
c rys t a l ,  bes ides  which the behav ior  of the function 91 depends on the d i rec t ion along which the cor re la t ion  
connections a r e  examined.  Graphs  of these  hmctions a r e  shown in Fig. 2. Curves  1, 2, and 3 a r e  the r e l a -  
t ionships  r (P) for  a luminum, copper ,  and g e r m a n i u m  (silicon) respec t ive ly .  The functions ~i (P) a re  in-  
va r i an t  re la t ive  to the axial  p r o p e r t i e s  and direct ions  given in Fig. 3. Here  the number s  show the index of 
the function 9i. 

As seen  f r o m  the f igures ,  all  the  functions ~ i  have an e x t r e m u m  where  1.5 -< p -< 3, a f t e r  which they 
d e c r e a s e  with i n c r e a s e  in the dis tance.  The  angular  dependence of the function ~Pl is found to be  weak. 
Hence,  at d is tances  of the o rde r  of the sca le  of the cor re la t ion ,  the di f ference in the functions ~1 calculated 
fo r  the  d i rec t ions  [001], [110], and [111] is  1%. The dependence between the e las t ic  moduli of the function 
~Pl appea r s  cons iderab le  at sma l l  p and p rac t i ca l l y  d i sappea r s  at d is tances  somewhat  exceeding the c o r r e l a -  
t ion sca les ,which  is i l lus t ra ted  by cu rves  1-3 in Fig. 2. F o r  functions ~4 (P) and ~ ( p )  (curves  4 and 5) 
th is  dependence is negligibly smal l .  

The  coordinate  dependences  of the components  of the co r re la t ion  ma t r i x  of in ternal  s t r e s s e s ,  c o r r e -  
spondingto the  or ienta t ions  [001], [110], and [111] of the sect ion which connects the points between which the 
co r re l a t ion  connection is es tabl ished,  a r e  given in Fig. 4. The numbers  on the curves  indicate the indices 
of the d imens ion less  co r re la t ion  functions Stun, obtained by means  of division of the magnitude y mn (r) by 
Z mn(0) in the case  of Z ran(0) ~ 0 and by  the absolute magnitude of the max imum (minimum) Z ran(r) if  
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E ran(0) =0. F o r  compar i son ,  an exponent (curve 1) which desc r ibe s  the coordinate  dependence of the b ina ry  
co r r e l a t i on  function of dis locat ion polar iza t ion  is given on the graphs .  

If  we compare  the  cu rves  for  the [001] direct ion,  we note that  the monotonous d e c r e a s e  takes  p lace  
only for  the component  $44. In all  the remain ing  ca se s  the curves  pas s  through a min imum which takes  
p lace  at d i s tances  f rom p =2 to p =3. 

As is  seen f rom the s t ruc tu re  of the ma t r i x  given in Fig. 1, fo r  the di rect ion [001] the changeover  to 
cubic s y m m e t r y  imposes  additional conditions $33 =Sll, $66 =$44 , and $13 =S n,  whereby  none of the components  
of  the m a t r i x  Stun is  he re  conver ted  to ze ro .  On the o ther  hand, for  the d i rec t ion [i11], which is a lso  
c h a r a c t e r i z e d  by s ix  different  components  of the co r r e l a t i on  ma t r i x  of internal  s t r e s s e s ,  the changeover  to 
cubic s t r u c t u r e  imposes  additional conditions $14 =S~5 =$45 =0. Corresponding to th is ,  th ree  of the six dif-  
fe ren t  components  of the m a t r i x  Snm , where  r ~ 0, r e tu rn  to zero .  The [111] di rect ion is also c h a r a c t e r i z e d  
by the fact  that  none of the components  Stun is  desc r ibed  by a monotonous curve .  We a lso  point out that 
the  components  S14 and St5 a r e  found to be  negat ive,  which indicates  a noncor respondence  of the signs of 
r andom components  of the longitudinal and shea r  components  of the e las t ic  fields.  At the same  t ime  the 
co r r e l a t i ons  of the different  shea r  components  of the s t r e s s e s ,  desc r ibed  by the component  $45, will  be 
posi t ive .  

F o r  the [110] di rect ion the changeover  to r ~ 0 leads  to convers ion  of the components  SI~ =$26, $3~, 
and $45 to  zero .  Hence the function $4~ in the whole region is posi t ive,  while the components  $16 ~ S3G a re  
negat ive.  The monotonous drop takes  p lace  for  the component  $66, while the flmctions $I~, $12 , $33 , $13 , and 
S4a pas s  in tothe region of negat ive  va lues  at d i s tances  of the o r d e r  of one or two sca l e s  of co r r e l a t ions  and 
have a min imum at d is tances  2 ~ p -< 3, a f t e r  which the i r  a sympto t ic  approach to the a b s c i s s a  is observed.  

F o r  compar i son  of absolute  va lues  of co r re la t ion  t e n s o r s  of in ternal  s t r e s s e s  we will  in t roduce the 
p a r a m e t e r  Zmn, which equals  the ra t io  of E m n  (0) to the value ~ n  (0). Then,  se lec t ing  a luminum as the 
definite case ,  w e  will  find for  all  d i rec t ions  Z12 =0.92 and z4~ =0.047, that  is,  a co r re la t ion  between the shea r  
components  of the  f ield is cons iderably  weake r  than between the longitudinal components .  

In o r d e r  to c o m p a r e  the components  ~ am which a r e  conver ted  to  ze ro  when r --~ 0, we will  in t roduce 
the coeff ic ients  ~P~mn' having de te rmined  them as a ra t io  of the e x t r e m e  value ~'~m to the g r ea t e s t  of the 

magni tudes y, pq* at a given p *. All the functions Stun have a m a x i m u m  (minimum) at p = 1.5. The compo-  

nent ~14 has the g r ea t e s t  of the m a x i m a  for  the [111] direct ion,  and the component  ~3G has  the g r e a t e s t  of the 
m a x i m a  for  the  [110] direct ion.  Accordingly,  in the f i r s t  case  we find ~ 15_0.76 , 1 ~  _ ~t445 =0.045, and in the 
second case  ~ = 0.95, ~43~ =0.18. Compar i son  of the va lues  EI~ for  the [111] d i rec t ion  and ~3~ for  [:ll0] at 
the points  of the min imum (p = 1.5) with cor responding  magnitudes Ell  (P) shows that  they a re  of one order :  
Z n  (1.5) ~ 2E44 (t.5) for  the d i rec t ion [111], and El l  (1.5) ~ 2Z36 (1.5) fo r  the d i rec t ion  [110]. 
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